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1. Abstract 

This is the final report for LDRD project 12-ERD-038 titled Automatic Complexity Reduction. The 

original budget request was for $1.1M for three years, the project was instead funded at $420K 

for three years. The team consisted the PI Daniel White, post-doctoral researcher Kyle Lange, 

and staff member Mark Stowell. This work largely builds upon the research of Matt Stephanson, 

who was a summer scholar at LLNL.  This report will provide a high level overview of the 

problem and the solution approach, as well as results, and future research directions. 

 

2. Approach 

 

 

Figure 1. Overview of the model order reduction problem. 

 

The generic problem to be solved is illustrated in Figure 1 above. On the far left we have some 

system (could be a complicated assembly, or a single waveguide or antenna) and we want to 

know how this system responds to an electromagnetic input. The system is parameterized by a 

few parameters, the parameters could be frequency and angle of incidence of the excitation, 



could be geometric dimensions, material properties, etc. The full complexity model is a finite 

element or boundary element discretization, and for purposes considered here the solution of 

the full complexity model is the “truth” or “exact” solution. The goal is to obtain solutions for 

arbitrary combinations of parameters, perhaps thousands or millions of points in parameter 

space. For example, if we have 3 parameters, and each parameter can take on 100 values, this 

gives 1 million required simulations. This is problematic if each simulation requires minutes to 

hours. And clearly the problem becomes quite complex as the number of parameters increases; 

the computation cost (complexity) is an exponential function of the number of parameters. This 

is sometimes referred to as the curse of dimensionality.  

The proposed approach is also shown Figure 1. Instead of evaluating the full complexity model 

at every point in parameter space (the top row in the figure), the full complexity model is 

evaluated at a few key points in parameter space called sample points, the resulting solution at 

each sample is called a snapshot. The snapshots are used to construct a reduced dimensional 

model, also called a reduced order model. The idea is that this reduced order model captures 

the essence of the full complexity model but is orders of magnitude more efficient to evaluate. 

It is important to note that this is not a simple response surface, the reduced order model 

provides the full dimensional solution. For example, if the full complexity model produces the 

vector field for every element in the mesh, then the reduced order model will also produce this 

same field. Some of the key questions are, how many shapshots are required to create the 

reduced order model, how accurate is the reduced order model, and which particular 

interpolation methods should be used. 

 

 

Figure 2. Illustration of a reduced dimensional manifold. 

 

The first step in automatic model order reduction is to perform a change of basis. The original 

basis is the finite element or boundary element representation. The exact solution is a point in 



R^N, where N is the number of unkowns (degrees of freedom). The key assumption is that as 

the parameters are varied the exact solution resides in a reduced dimensional manifold in R^N, 

i.e. a one parameter problem results in a curve in R^N, a two parameter problem produces a 

surface in R^N, etc. Therefore some efficiency can be gained if we only approximate the reduced 

dimensional manifold instead of all of R^N. We seek a change of basis that will approximate this 

reduced dimensional manifold. One change of basis is a truncated proper orthogonal 

decomposition using the above mentioned snapshots. 

 

Let the electromagnetic problem, after discretization by an appropriate finite element or 

boundary element method, be given by  

  

 

 

 

where                                 are the parameters,                  is a NxN matrix,              is the right hand 

side vector of length N representing source terms and boundary conditions, and x is the solution 

vector of length N. Note that we need to solve over and over again,    K^m   times, where m is 

the number of parameters and K is the number of samples per parameter. 

 

The change of basis is given by 

 

 

 

 

 

where V is a NxM matrix, with M << N. Therefore the matrix V^T A V is of dimension MxM, much 

smaller than the original NxN matrix A. The columns of V are the above mentioned snapshots, 

solutions of the full complexity solution at selected sample points. If it is desired to have the 

smallest possible M, the singular value decomposition can be used to keep the minimum 

number of columns of V to obtain a prescribed tolerance. When the SVD is used, this is called a 

truncated proper orthogonal decomposition. 

 

Note that the matrix triple product V^T A(p) V is expensive to compute. We do not want to 

explicitly compute this product for arbitrary values of p. If there exists a compact affine 

approximation for A(p), then this approximation can be used. As a simple example, consider  

 

A(p) = A0 + A1 p + A2 p^2.  

 

where A0, A1, and A2 are constant matrices independent of p. Inserting this into the change of 

basis formula gives  

 

V^T A(p) V = V^T A0 V + V^T A1 V p + V^T A2 V p^2. 
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Clearly the matrix triple products are independent of p and can be compute just once. Given an 

arbitrary value of p, the above MxM matrix is formed and solved, and the full solution is then 

given by x = Vx'. This assumption of affine approximation is not academic, certain problems in 

elasticity, heat transfer, electrostatics have exact affine representations of the finite element 

stiffness matrix when the parameter p denotes either a material property or a geometric 

dimension. In this project, we are concerned with problems that do not have an exact affine 

representation, and we therefore seek approximations. Two such approximations are the radial 

basis function approximation, and the empirical interpolation method. 

 

We investigate radial basis function interpolation as a means to construct an approximate affine 

representation of A(p). Radial Basis Functions (RBF) are smooth functions of a r = |x - xp|, where 

xp is a given point. RBF's are not explicitly interpolatory, but by solving a system of equations 

they can be used to fit any smooth function. The advantages of RBF's are that they are easily 

extended to high dimensional spaces, and they exhibit exponential convergence as more 

functions are used. Common RBF's are shown below. 

 

 
 

Given an arbitrary function of p, the radial basis function approximation of f(p) is given by 

 

 
 

where is the radial basis function, pi is the ith interpolation point, and i is the coefficient 

associated with basis function i. It is common to add a few low order polynomials into the 

interpolation, these are given by Given f(pi) for i=1,m, the coefficients are given by the 

system of equations below. 

 



 
 

Note that this system of equations is only computed once for the unknown coefficients  and . 

This then defines the approximate affine representation of A(p), and the reduced order model is 

completely defined. The offline steps are 1) compute the full solution at a few sample points, 2) 

compute the RBF approximation of the matrix A(p), 3) compute the reduced order model. Then 

for every parameter p the online steps are 1) form the  reduced order model, 2) solve the 

model, 3) construct the approximate full solution. This algorithm was implemented in software 

and results are shown below. One issue that was discovered was that the system of RBF 

equations can be ill-conditioned, leading to a poor interpolation. The solution was to limit the 

size of the RBF interpolation by subdividing the parameter space. In simple terms, the entire 

parameter space is spanned by several reduced order models rather than one large model. A 

hierarchical sampling structure was used to subdivide the parameter space. We believe this 

work is novel and it has been submitted for publication. 

 

The above described RBF interpolation is appealing because it is a "black box" method, it does 

not require any modifications to the finite element or boundary element solver, only matrices 

and solution vectors are required. But there are other methods that may yield better results if 

additional information is made available. In particular we investigated empirical interpolation, 

also known as magic points interpolation. This is a greedy algorithm that constructs an optimal 

interpolation given any initial basis set. It is a well conditioned and stable algorithm. The outline 

is given below. 

 

The points zi are the magic points. These points are not known in advance, they are compute 

one at a time by minimizing the L_infinity norm. In our case, the magic points zi are matrix 

locations, and f(zi) are matrix entries. This means that when we wish to solve a parameterized 

problem, we don't need to compute the full finite element or boundary element matrix, we only 

need to compute a select set of matrix elements, and from these we can reconstruct the entire 



solution. The functions  are the finite element or boundary element matrices (which can be 

thought of as being reshaped into vectors), and the q are ideal basis for these matrices. 

 

 

 

 
 

 
 

Note that by construction Q is a triangular matrix with 1's on the diagonal, hence the solve is 

efficient and stable. Perhaps not obvious, the above interpolation results in  

 

A(p) = A0 f(z0) + A1 f(z1) + ... Am f(zm) 

 



where the Ai's are constant matrices independent of the parameters p, and the f(zm)'s are 

particular values of the FEM/BEM matrices that are of course functions of p.  Note that the 

function form of the p dependence is not needed. Note that this is an invasive method, the 

FEM/BEM code must be modified to be able to compute only selected values of the FEM/BEM 

matrix for a given parameter. This is easy to do with our in house codes EMSolve and EIGER, but 

not possible with commercial codes. 

 

3. Circuit in a Box Results 

 

Consider the following scenario. We know that a particular electronic circuit can be negatively 

affected by an incident EM wave, we know this experimentally. The frequency is very important, 

let's assume the effect is strongest at 500MHZ. The measurements are made in a anechoic 

chamber, with the circuit sitting on Styrofoam. The important factor is the current induced on a 

particular microstrip. The complication is that in the real world circuit boards don't float in 

space, they are typically enclosed in imperfect chassis, and the details of the chassis may not be 

known. As an example problem, a specific circuit board (a 10MHz clock circuit, common to many 

industrial controls) is placed in a PEC rectangular box with a circular aperture. The location of 

the circuit (X,Y, and Z) as well as the location of the aperture are parameters.  A frequency 

domain boundary element method is used by the LLNL EIGER code to solve this problem. The 

total number of mesh elements is 3320, the total number of unknowns is 4122. This may not 

seem large, but the solver scales as O(N^3), so a single solve requires several minutes. 

 

 

 

Figure 3. a 10MHz oscillator circuit being tested in an anechoic chamber. 



 

 

 

Figure 4. Layout of the 10MHz oscillator circuit. 

 

 

Figure 5. Boundary element mesh of the 10MHZ circuit. 

 



 

Figure 6. Computed current on the 10MHz circuit at 500MHZ. 

 



 

Figure 7. Computational mesh of the circuit in a box. The (X,Y,Z) position of the circuit is a parameter to be varied. 

 

 



 

Figure 8. The top of the box showing the aperture. The (X,Y) position of the aperture is a paramter to be varied. 

 

 

 



 

Figure 9. Computed electric currents. The top of the box has been removed from the graphic to show the currents on the 
circuit. 

The first experiment is the aperture location given by X and Y coordinates, thus there are only 

two parameters. For convenience the parameters are scaled to [0,1], with the transformation X 

= 60 * p1 - 30, Y = 60 * p2 - 30. To get started the 2-dimensional parameter space was 

partitioned into 4 quadrants, and each ROM was constrained to use no more than 15 sample 

points. The total number of sample points was 43, thus 43 full complexity solutions were 

required to build the ROM. The quality of the ROM was tested by computing the truth solution 

at 200 random points, the mean error is 0.02, the worst case error is 0.19. This may or may not 

be adequate depending upon the application. In order to demonstrate the adaptive refinement 

of parameter space, the tolerance was reduced to 0.001. The result is shown in Figure 10 and 11 

below, the parameter space was subdivided into 16 partitions. The maximum ROM dimension 



was again constrained to be 15, and a total of 154 full complexity solutions were required to 

build the ROM. This second model was tested using 200 random truth solutions, the median 

error was 0.0025 and the worst case error was 0.06. The cumulative error distribution is shown 

in Figure 12. Comparing the two models, the second is clearly more accurate than the first, at 

the same on-line cost, but at a larger off-line cost. Note that the cost of evaluating the ROM is 

10^6 times less expensive than the full complexity solution, it is essentially free. The ROM can 

be evaluated millions of times, essentially completely exploring all of the 2D parameter space, at 

a one time cost of 154 full complexity solves to build the ROM. And note that even though the 

reduced order model is of dimension 15, it provides the full 4122 unknowns. Other than some 

"noise", the ROM solution is indistinguishable from the full solution. 

 

 

Figure 10. Sample points for the aperture location. 

 

 

Figure 11. Partitioning of the parameter space. There is one small dimensional model for each partition. The overall model is 
then a collection of small models. 

 



 

 

 

Figure 12. Error in the reduced order model, computed by differencing the ROM with the truth solution for 200 random 
points in parameter space. 

 

 

A second test was performed, this time using the X, Y, and Z location of the circuit in the box as 

parameters. The parameter transformation is X = 60* p1, Y = 60* p2, Z = 20*p3 + 10. The ROM 

tolerance was set to 0.001 and adaptive hierarchical refinement of parameter space was 

employed. The maximum number of sample points per partition was limited to 35. The resulting 

partitioning of parameter space is shown in Figure 13, with 43 partitions. The sample points are 

shown in Figure 14. The total number of points is 605. Using these values, the ROM is 3e5 times 

faster than the full complexity solution. The error of the ROM was evaluated by computing the 

truth solution at 200 random points, the median error is 0.01 and the worst case error is 0.055. 

A histogram of the error is shown in Figure 15.  If the ROM is evaluated for points on a 20x20x20 

grid in parameter space, it would be 47 times more efficient than the brute force approach. If 

the ROM is evaluated on a 100x100x100 grid in parameter space, it would be 950 times more 

efficient than the brute force approach. 

 



The above results are very promising. But there were some issues. One issue is that the error 

estimator that we used was not particularly accurate, and it was optimistic (the actual error was 

always greater than the estimated error). Also, it was very difficult to achieve a highly accurate 

ROM, we were unable to achieve a worst-case error below 0.01. We suspect this is due to the 

nature of the BEM method, the full complexity equations are ill conditioned, hence small errors 

are amplified. There are better conditioned numerical methods for frequency domain 

electromagnetics than those used in the LLNL EIGER code, and perhaps this would enable more 

accurate ROM's. But this was beyond the scope of this project. 

 

 

Figure 13. Sample points in parameter space for the (X,Y,Z) circuit location. 

 

 

Figure 14. Hierarchical partitioning of the 3D parameter space. There is one model per partition. 

 



 

Figure 15. Error in the ROM computed at 200 random points in parameter space. 

 

4. Photonic Crystal Fiber Results 

 

Photonic Crystal Fibers (PCF), also known as microstructural fibers or holey fibers, have evolved 

from an academic curiosity into commercial technology, with wide ranging applications in 

telecommunications, biotechnology, metrology, etc. The key aspect of PCF's is arrays of small 

holes in the otherwise homogenous glass. The size, shape, and location of the holes are 

parameters that can in principle be optimized for a particular application. In addition to 

optimization, it may be important to understand the effect of geometric perturbations from the 

ideal, due to manufacturing issues, bending of the fiber, etc. There are basically two distinct 

types of PCF's, solid core and air core. Solid core fiber consists of a solid glass cylindrical fiber, 

with a cladding that consists of the same glass material but with an array of longitudinal holes 

surrounding the solid core. The holes essentially reduce the effective permittivity of the glass, 

thereby enabling total internal reflection guiding of light in the core much like standard fibers or 

graded-index optical fibers. In air core fibers, also called Photonic Bandgap Fibers, there is a 

large hole in the center of the fiber. The surrounding cladding still consists of glass with an array 

of holes, but the parameters are such that the cladding has an negative effective permittivity at 

the desired frequency, resulting in a bandgap and  prohibition of wave propagation in the 



cladding. The result is that the light is trapped in the air core. PCF's can be designed to have very 

broadband single mode operation, zero or anomalous dispersion relations, a wide range in 

numerical apertures, and spatially broad fields resulting in high power at low power densities. 

 

The appropriate equation for simulating an optical fiber is Maxwell's Equations, with the 

assumption that the solution is a wave propagating in the z-direction. Thus only a 2D mesh is 

required, this gives the solution of the electric field in the plane normal to the direction of 

propagation. The problem is a generalized eigenvalue problem involving a mass-like matrix and 

a stiffness-like matrix, the eigenmode is the electric field and the eigenvalue is the wavenumber 

(actually the eigenvalue is the wavenumber squared). We are concerned with the largest 

eigenvalues and associated eigenmodes, these are the smoothest modes, and the eigenvalues 

are purely real. There exists higher order modes, and complex modes which do not propagate, 

and these are of no interest here. 

 

 
 



 

Figure 16. An example photonic crystal fiber. 

 



 

Figure 17. The LLNL fiber draw tower. 

 



 

Figure 18. Varying the hole radius. 

 



 

Figure 19. Computed eigenmodes (electric field intensity) for various frequencies and hole radii. 

 

To get started we assume the parameters are the frequency which will range from 200 to 600 

THz, and the hole radius which will vary from 0.25 to 1.25 microns. The center to center distance 

of the holes will remain fixed at 2.5 microns. Other hole separations can be considered by simply 

scaling these results. The permittivity of the glass will be 2.25. The discrete problem has 360,000 

unknowns. Thus the dimension of the eigenvalue problem is N=360,000. ARPACK is used to 

compute the two largest eigenvalues using a Lancoz space of 20, each solve takes about 5900 

seconds (1 1/2 hour) on a multiprocessor computer (12 processors I think). 

 

The eigenmodes vary in an interesting manner, as the hole radius is increased the field energy is 

concentrated in the center core. This is because the effective permittivity is reduced in the outer 

core. The same thing happens as the frequency increases, this is shown in Figure 19 



 

The algorithm for constructing the reduced order model for this fiber problem is similar to that 

used in the circuit problem, we use a change of basis plus radial basis function interpolation. 

One improvement made here is that the sample points in parameter space lie on a nested grid. 

We start with a 2x2 grid, then move to 3x3, 5x5, 9x9, and 17x17. Not all points are used, an 

error estimator is used to determine when to use a new sample point. This nested grid approach 

is used because for each level as different scale factor is used for the radial basis functions. 

Figure 20 shows the sample points in 2D parameter space. The larger disks represent the early 

sample points, the smaller points represent the latter sample points. All sample points are used 

to construct the ROM. Using 57 sample points, the worst case error is less than 1%. Error plots 

for various levels of refinement are shown in Figure 21. Note that the ROM requires only a few 

seconds to evaluate. 

 

 

Figure 20. Sample points in 2D parameter space. Large dots denote the early samples, small dots denote the latter samples. 
Note the non-uniform sampling. 



 

Figure 21. Error in the reduced order model for different size models. 

 

 

 

We have preliminary results for a three parameter study, frequency, hole radius, and stretch 

factor. The ROM required 260 snapshots, and the dimension of the reduced order model is 

M=472, tiny compared to the original dimension of N=360,000. The ROM is about 844 times 

faster, and the error is less that 0.24% Some results are shown below. In summary, these results 

are very impressive, in part because the parameter space sampling is a bit more sophisticated 

that that used for the circuit problem, and also because it seems that the finite element 

electromagnetic eigenvalue problem is better conditioned. 

 



 

Figure 22. Example eigenmodes (electric field intensity) for various hole radii and stretch factors. 

 

 

5. Microstrip Waveguide Results 

 

This problem is a microstrip waveguide design problem parameterized by three geometric 

parameters. Depending upon the value of these parameters, the waveguide can act as a 

through, a lowpass filter, or a bandpass filter. The problem will be solved using the frequency 

domian boundary element code EIGER. Only the metal microstrip is meshed, the dielectric 

substrate is modeled using a Greens function. The computational mesh consists of 720 triangles, 

and 1290 unknowns, quite small. But for this problem, due to the Greens function treatment of 

the substrate, the matrix fill time completely dominates. A single solve requires several minutes. 

 

For this problem the empirical interpolation method will be used instead of radial basis function 

interpolation. The three dimensional parameter space will be sampled on a 5x5x5 uniform grid 

(probably not optimal, this was just a starting point). This resulted in 125 snapshots from which 

to construct the truncated proper orthogonal decomposition. The SVD of these snapshots is 



shown in Figure 23. The error tolerance was set to 10^-6, resulting in M = 71 for the change of 

basis. The dimension of the ROM will be M = 71, 5% smaller than the dimension of the original 

full complexity problem. For an O(n^3) algorithm the speedup is then around 6000x, but for this 

problem the matrix fill dominates so the speedup is even greater. These same sample points 

were used for the empirical interpolation. For each snapshot, the impedance matrix is reshaped 

into a vector and stored as a column in a new matrix V. The SVD of this matrix is then computed. 

The empirical interpolation had a tolerance of 10^-6, and resulted in 35 magic points. The SVD is 

shown in Figure 24, and the magic points are shown in Figure 25. Recall that the EIM process 

results in basis function expansion of the parameterized impedance matrix, where the basis are 

impedances matrices for specially selected parameters. The complete reduced order model has 

the form 

 

Q(p) = a1(p) Q1 + a1(p) Q2 + … a35(p) Q35 

 

where Qk = V^T Zk V. Recall that V is the change of basis of dimension m = 71, hence the Q 

matrices are 71 x 71. The coefficients ak(p) are the values of the impedance matrix Z(p) 

evaluated at magic point k. 

 

An example truth solution, and an example ROM solution, are shown in Figures 26 and 27, 

respectively. They are indistinguishable. For computing the error the truth solution was 

computed on a finer grid, and the error is shown in Figures 28 and 29 for the two sources of 

error (the error in the change of bases and the error in the empirical interpolation can be 

computed separately). About 90% of the fine grid points have an error of less that 10%, not bad, 

but not great either. The error plots indicate that the empirical interpolation the dominate 

source of the error. We suspect the problem with the error is similar to that of the circuit 

problem, ill conditioning of the original full complexity discretization. It would be interesting to 

do an apples-to-apples comparison of radial basis function verses empirical interpolation for this 

problem. 

 



 

Figure 23. Singular value decomposition of solution snapshots for 125 sample points. 



 

Figure 24. Singular value decomposition of the impedance matrix for 125 different snapshots. 



 

Figure 25. Computed magic points for sampling the impedance matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 26. Truth current density for one point in parameter space. 

 

 

Figure 27. Model current density for one point in parameter space. 

 



 

Figure 28. The error in the change of basis. 

 



 

Figure 29. The error in the complete reduced order model. 

 

6. Mechanical Microstructure Results 

 

This experiment has nothing to do with electromagnetic interactions. Instead, we wanted to see 

if the methodology developed for electromagnetic interactions would work for structural 

analysis problems. The structure of interest is a unit cell of a negative coefficient of thermal 

expansion material. The structure consists of two distinct materials, each with a standard 

positive coefficient of thermal expansion. The structure is hinged in such a way that it the outer 

boundary contracts as the beam elements expand. This structure was simulated using ALE3D. 

The ALE3D code was modified to write the stiffness matrix to disk for analysis. The structure is 

shown in Figures 30 and 31 for two different points in parameter space. There are several 

different parameters that can be varied, in this study we only varied 2 parameters. The material 

is considered to be “at rest” at 270 degrees K, and a small temperature change (10 degrees) is 

applied to the entire problem. This results in a small displacement, and example  displacement is 

shown in Figure 32. 

 



The structural problem is discretized using a 22,000 element hexahedral mesh. The resulting 

sparse stiffness matrix had about 690,000 nonzero entries. The parameter space was sampled 

on a 22x22 grid, solutions on this fine grid will be considered the truth solutions. Empirical 

interpolation will be used to approximate the stiffness, using snapshots from a 3x3 grid, a 5x5 

grid, and an 11x11 grid. The results are shown in Figure 33 - 35 below. The error is 1.4% for a 

3x3 grid (model of dimension m = 9), 0.07% for a 5x5 grid (model of dimension m = 25), and 

0.004% for a 11x11 grid (model of dimension m = 121). These are very small errors, thus we see 

that empirical interpolations works very well for the FEM discretization of linear elasticity. Of 

course the total error is related not just to the empirical interpolation error, but also the 

conditioning of the FEM matrix. Time ran out before the total error could be computed. 

 

 

Figure 30. Microstructure for one set of parameters. The green and red denote the two different materials. 

 

 



 

Figure 31. Microstructure for a different set of parameters. 

 

 

Figure 32. Computed displacement (x component) for a 10 degree temperature change. The net displacement it determined 
by measuring the displacement at two tabs on the y=0 line. 

 



 

Figure 33. Empirical interpolation error for a 3x3 grid of sample points. 

 

 

 

 

 

 

Figure 34. Empirical interpolation error for a 5x5 grid of sample points. 

 

 

 



 

 

Figure 35. Empirical interpolation for a 11x11 grid of sample points. 

 

 

7. Future Directions 

 

We demonstrated that model order reduction can be very useful for exploring parameter space. 

Excellent results were obtained for an electromagnetic eigenvalue problem, a decrease in run 

rtime of over 800x, with less than 1% error. Barely satisfactory results were obtained for other 

electromagnetic interaction problems, we suspect this is more an issue of ill-conditioning of the 

original full complexity solution, rather than a flaw in the model order reduction algorithm. 

 

Clearly one possible improvement is a more clever sampling of parameter space. If good error 

estimators can be developed, these can be used to guide the choice of sample points. 

Alternatively a Latin hypercube or related sampling can be employed. Note that there is nothing 

statistical about our problem or process, but sample points that are optimal for statistical 

sampling may work well in any case. 

 

The computational experiments we performed were limited in size in order for the truth 

solution to be tractable. The real benefit in model order reduction is for large parameter spaces. 

Our algorithms are independent of the dimension of the parameter space, and testing these 

algorithms for larger problems should be a priority. 

 

 


